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Abstract
We consider the general classical Heisenberg model (HM) with a z-axis
anisotropic Hamiltonian. The ferromagnetic (FR) (antiferromagnetic (AF))
nonlinear spin waves (NLSWs), also called finite-amplitude spin waves, are
well-known solutions of the equations of motion and are characterized by
constant and equal (in each sublattice, in the AF case) z-components of the
spins. In this paper, we present general analytical solutions which share this
property, but do not necessarily reside on the equal-spins shell in phase space
(spins can be unequal) and hence will be termed ‘off-shell’ NLSWs. For
periodic lattices, we find that these solutions are linear combinations of standard
FR (generalized AF) NLSWs. For a Heisenberg ring, in particular, we prove
that the ‘off-shell’ solution is the sum of only two FR (generalized AF) NLSWs
of opposite momenta. In this case, we show that the standard NLSWs are the
only ‘on-shell’ solutions with the property that the z-components of the spins
(in each sublattice, in the AF case) are all equal to the same nonzero constant.
Novel standing-wave solutions with planar spins are also presented.

PACS number: 05.45.−a

1. Introduction

The Heisenberg model (HM), or Heisenberg spin system, describes magnetic ordering in
materials [1–4] and it has been of central importance in condensed matter physics for several
decades. The literature of theoretical and experimental studies on the quantum version of
the HM is vast1. The classical HM has attracted considerable attention as well, both as
a model of magnetic phenomena and due to its interesting nonlinear dynamics. However,
classical Heisenberg magnets, especially chains, have been mostly studied in the continuum

1 Any list of publications, we could refer to here, would be incomplete. For some important work in the field see
[5–25] and references therein.
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limit2. Even a simple Heisenberg ring is non-integrable and the only so-far known exact
analytical solutions for a general periodic lattice are the (propagating) ferromagnetic (FR) and
antiferromagnetic (AF) NLSWs. (For these solutions and some additional special cases see
[32–34].) These are finite-amplitude generalizations of the small-amplitude linear spin waves,
the latter being approximate periodic solutions of the nonlinear equations of motion in the
vicinity of the FR and AF fixed points.

In the present paper, we will consider a general HM with z-axis anisotropy. Then, in the
FR NLSWs all the spins have the same z-component which is simply a constant. It is natural
to inquire whether there are more solutions with this property. We will indeed find more
such solutions, but we will have to give up the constraint of equal spin lengths (‘off-shell’ FR
NLSWs). First, for an arbitrary network of spins, we derive the form of the general solution
of the equations of motion with constant (although not necessarily equal) z-components of the
spins. An interesting special case leading to the generalization of the concept of FR NLSWs
is also examined. Then, we assume a periodic lattice and show that the general solutions with
z-components of all spins equal to a nonzero constant, can be written as linear combinations
of FR NLSWs. In the special case of the Heisenberg ring (closed chain of spins with equal
nearest-neighbor only interactions), we prove that these solutions are linear combinations of
only two FR NLSWs of opposite momenta. The case of planar spins (i.e., their z-components
are zero) is particular; it also includes a ‘standing’ NLSW. Moreover, we study the shells
on which the solutions reside. We easily establish that at least for the Heisenberg ring, the
propagating FR NLSWs are the only ‘on-shell’ solutions with z-components of all spins equal
to a nonzero constant.

We move on to consider the general HM with z-axis anisotropy on a bipartite periodic
lattice. Such a periodic lattice is divided into two disjoint sublattices A and B, so that any
two interacting sites belong to different sublattices. Then, we seek solutions such that the
z-components of all spins in each sublattice are equal to a nonzero constant. It turns out that
these solutions can be expressed as linear combinations of generalized AF NLSWs. The latter,
on the equal-spins shell, coincide with the standard AF NLSWs. In the case of the Heisenberg
ring, in particular, we are able to prove that these solutions are linear combinations of only
two generalized AF NLSWs of opposite wavevectors. The case where at least the spins of
one sublattice are planar is separately treated and is rich in standing-wave solutions. Finally,
we study the shells on which the solutions reside. We show that at least for the Heisenberg
ring, the propagating AF NLSWs are the only ‘on-shell’ solutions with z-components of all
spins equal to a nonzero constant for each sublattice. In the following section, we introduce
the classical Heisenberg model.

2. The classical HM

We consider a HM for the interaction of the classical spins uj , j = 1, . . . , � described by the
Hamiltonian

H = −
�∑

j<l

gjluj ·ul −
�∑

j=1

hj

(
uz

j

)
, (2.1)

where gjl are the exchange constants and we define

uj · ul ≡ u⊥
j · u⊥

l + �uz
ju

z
l ≡ (ux

j u
x
l + u

y

j u
y

l

)
+ �uz

ju
z
l , (2.2)

allowing for some longitudinal exchange anisotropy �. Each function hj is differentiable but
otherwise arbitrary. Thus, we include in our considerations the special cases of a constant

2 For instance, see [26–31] and references therein.
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external magnetic field in the z-direction (hj are linear), and of z-axis single-ion anisotropy
(hj are homogeneous and quadratic).

The equations of motion form a first-order system of �-coupled quadratic equations

duj

dt
= uj ×

(
�∑

l=1

gjl

(
u⊥

l + �uz
l z
)

+ bj

(
uz

j

)
z

)
, j = 1, . . . , �, (2.3)

where bj ≡ dhj

duz
j

. Taking the dot product on both sides of (2.3) with uj , we can immediately

see that the lengths of the individual spin vectors are first integrals of the motion, that is

u2
j = s2

j , j = 1 . . . �, (2.4)

where sj are arbitrary non-negative real constants. It is exactly on the hypersurface defined
by (2.4) that one can recast (2.3) in the form of Hamiltonian equations with the Hamiltonian
given by (2.1). Beyond the spin lengths and the energy, additional constants of motion can be
found by inspecting the sum of equations (2.3),

d

dt

�∑
j=1

uj = (� − 1)

�∑
j,l=1

gjl

(
uj × uz

l z
)

+
�∑

j=1

uj × bj

(
uz

j

)
z. (2.5)

One sees that, for arbitrary �, the z-component of the total spin is conserved. In the isotropic
case � = 1 and if all bj are equal to the same constant b (case of a constant and homogeneous
external magnetic field b = bz), the total spin

∑�
j=1 uj has constant length and precesses

about the z-axis. If � = 1 and b = 0, both the direction and the magnitude of the total
spin are conserved. As there are no other constants of motion in general, the system (2.3) is
non-integrable, and sure enough, a general closed-form analytical solution has not been found.

As an additional insight in the model, let me point out that (2.3) is invariant under the
rescaling transformation(

1

t
, g, b

)
→ J

(
1

t
, g, b

)
, (2.6)

where J is a nonzero real constant. Hence, an overall renormalization of the exchange and field
strengths does not affect the dynamics. Moreover, for bj

(
uz

j

)
either vanishing or proportional

to uz
j , the dynamics essentially depend only on the relative (as opposed to the absolute) spin

lengths since (2.3) is invariant under the rescaling(
1

t
,uj ,B

)
→ s

(
1

t
,uj ,B

)
, (2.7)

for any nonzero real constant s.
If all the spins are taken to be of the same length s, in which case (2.4) reads

u2
j = s2, j = 1, . . . , �, (2.8)

we will consider the motion to be ‘on-shell’. In the following, we will relax the ‘on-shell’
condition (2.8) and consider the broad scenario described by (2.4).

3. Spin networks

3.1. The general solution with constant z-components

Consider a general spin network, that is, let the interaction matrix g be an arbitrary real
and symmetric matrix with zero diagonal. To find solutions with constant z-components of

3
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the spins, it will be more convenient to write the equations of motion (2.3) in terms of the
components u±

j ≡ ux
j ± iuy

j , u
z
j :

du+
j

dt
= iuz

j

(
�∑

l=1

gjlu
+
l

)
− iu+

j

(
�∑

l=1

�gjlu
z
l + bj

(
uz

j

)) ; j = 1, . . . , � (3.1a)

duz
j

dt
= Im

(
u−

j

�∑
l=1

gjlu
+
l

)
; j = 1, . . . , �. (3.1b)

Setting uz
j = rj (real constants), (3.1a) becomes a linear system in u+

j , while (3.1b) reduces
to a set of quadratic constraints for u+

j :

du+
j

dt
− i

�∑
l=1

Ajlu
+
l = 0; j = 1, . . . , � (3.2a)

Im

(
u−

j

�∑
l=1

gjlu
+
l

)
= 0; j = 1, . . . , �, (3.2b)

where A is the real matrix

Ajl ≡ rjgjl −
[
�

�∑
n=1

gjnrn + bj (rj )

]
δjl, (3.3)

and the symbol Im represents the imaginary part. The system (3.2a) is sufficient to determine
the general solution for the transverse components u+

j in terms of initial conditions. And as we
will see, (3.2b) only poses a restriction upon the set of possible initial conditions. Note also
that (3.2b), for j such that rj �= 0, can be immediately derived by combining the j th equation
of (3.2a) with the equation

Im

(
iu−

j

du+
j

dt

)
= 0. (3.4)

Thus, for rj �= 0 the set of independent equations of motion automatically incorporates the
j th first integral (2.4) in this sense: one can readily trade the j th equation in (3.2b) for the j th
equation in (2.4) or

u+
j u

−
j + r2

j = s2
j , (3.5)

as the latter readily implies (3.4).
Now, the solution of (3.2a) is standard,

u+
j =

�∑
k=1

ckPjk(t) eiωkt , (3.6)

where ωk are the (complex) eigenvalues of the matrix A and ck are arbitrary complex numbers.
The kth column of the matrix P is a vector polynomial, whose coefficients are generalized
eigenvectors of A corresponding to the eigenvalue ωk . Its degree plus one is less or equal
to the maximum degree of the elementary divisors of A corresponding to ωk . This means
that P is a constant matrix if and only if A is diagonable. Now, since the flow is on the
shell (2.4), terms in (3.6) which are not purely oscillatory or at least constant, must be ruled out
once (3.2b) is also taken into account. To see that explicitly, we can substitute (3.6) into (3.5),
�∑

k=1

|ck|2|Pjk(t)|2 e−2(Im ωk)t +
�∑

k′,k=1
k′ �=k

ck′c∗
kPjk′(t)P ∗

jk(t) ei(ωk′−ω∗
k )t = s2

j − r2
j , ∀ j.

4
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For these equations to hold, it is necessary that each term of the first sum be bounded at
the limits t → ±∞. Consequently, ck = 0, unless Im ωk = 0 and the vector P·k is time
independent. Therefore, we will write

u+
j =

M∑
k=1

ckPjk eiωkt , (3.7)

where P·k, k = 1, . . . , M are the linearly independent eigenvectors of A corresponding to its
real eigenvalues. Substituting (3.7) into (3.2b) yields

Im

(
M∑

k′,k=1

ck′c∗
kP

∗
jk eiωk′k t

�∑
l=1

gjlPlk′

)
= 0, (3.8)

where

ωk′k ≡ ωk′ − ωk. (3.9)

Equations (3.8) determine the set of possible values of the coefficients ck , or equivalently, the
set of permissible initial conditions for u+

j . Note that (3.7) is an SO(2) invariant solution if
and only if all the nonzero terms correspond to the same value of frequency. This is also a
sufficient (although not necessary) condition for periodicity.

3.2. An important special case

Consider the case where the matrix P is unitary and happens to diagonalize the interaction
matrix g, i.e.,

P †gP = V, (3.10)

Vk′k = vkδk′k being a real diagonal matrix. Using (3.10), (3.8) becomes

Im

(
�∑

k′,k=1

vk′ck′c∗
kP

∗
jkPjk′ eiωk′k t

)
= 0. (3.11)

Interchanging the dummy indices k′, k in (3.11) and adding the resulting equation to (3.11)
itself, we find the equivalent

Im

( �∑
k′,k=1
k′>k

vk′kck′c∗
kP

∗
jkPjk′ eiωk′k t

)
= 0, (3.12)

where

vk′k ≡ vk′ − vk. (3.13)

We were allowed to introduce the relation k′ > k underneath the summation, because the
summand vanishes for k′ = k and is symmetric in k, k′. It is now obvious from (3.12) and the
discussion above, that if condition (3.10) holds, then (3.2) has the solutions

u+
j =

∑
k:vk=v

ckPjk eiωkt , ∀ v ∈ �(g), (3.14)

where by �(g) we denote the spectrum of g, and ck are arbitrary (unconstrained) complex
numbers.

Certainly, (3.10) is a very stringent condition. For example, one can easily see that the
subset of choices of the matrix g, for which there is a choice of rj , � and bj such that (3.10)

5
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holds, is of measure zero within the set of all possible choices of g. A simple case where (3.10)
holds, is when rj , bj and

f ≡ �

�∑
n=1

gjn (3.15)

are all independent of j . Then, A is the symmetric matrix

A = rg − [rf + b(r)]I, (3.16)

with I being the unit matrix, and

ωk = r(vk − f ) − b(r). (3.17)

Each term in the corresponding solution (3.14) together with uz
j = r is the generalization of a

FR NLSW to the case of an arbitrary Heisenberg spin network.

4. ‘Off-shell’ FR NLSWs

Now, we will see that if the spin network can be placed on a periodic lattice, then the entries
Pjk have an harmonic dependence on j and k, hence (3.14) is a sum of harmonic waves.
Moreover, �(A) is at least doubly degenerate, so for each ω, (3.14) contains at least two
terms. We will show that, in the case of a Heisenberg ring with nearest-neighbor interactions,
the number of these terms is exactly two.

4.1. The general solution with constant and equal z-components

Consider � spins sitting on the sites of a finite D-dimensional Bravais lattice, in the
sense that gjl = g(|Rj − Rl|), where Rj is the position vector of the j th site, and also
Born–von-Kármán (cyclic) boundary conditions are assumed. Note that in this case, the
interactions of an individual spin are independent of its location on the lattice. As a result, the
quantity

vk ≡
�∑

l=1

gjl eik·(Rl−Rj ) (4.1)

is independent of j for any D-vector k. Using this fact, we can readily show that (3.10) is
satisfied for Pjk = eik·Rj and Vk′k = vkδk′k, where the wavevector k runs over � distinct
values within a primitive cell of the reciprocal lattice. Since vk must be real, we can write

vk =
�∑

l=1

gjl cos[k · (Rl − Rj )] (4.2)

and
�∑

l=1

gjl sin[k · (Rl − Rj )] = 0. (4.3)

In fact, we can directly verify the identity (4.3), by noting that its left-hand side is independent
of j , and subsequently replacing

∑�
l=1 by 1

�

∑�
j=1

∑�
l=1. By definition, P has to diagonalize

A as well. But

f = �v0, (4.4)

6
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so f is independent of j , and then assuming that rj and bj are also independent of j , we have
that (3.16) holds, and so

ωk = r(vk − f ) − b(r). (4.5)

According to our discussion of section 3, the general solution of (3.2) is an expansion in
plane waves

u+
j =

∑
k

ck ei(k·Rj +ωk t), (4.6)

with an r-dependent dispersion relation given by (4.5), and constants ck obeying

Im

⎡⎣ ∑
k′>kk′ �=−k

vk′kck′c∗
k ei(k′−k)·Rj eiωk′k t

⎤⎦ = 0, (4.7)

where

ωk′k = rvk′k. (4.8)

The relation k′ > k, underneath the first summation, denotes that there exists a j such that
k′
j > kj , and k′

l = kl for all l < j , where l, j are indices from {1, . . . , D}. We also omit
terms corresponding to k′ = −k, as they are identically equal to zero due to the degeneracy
vk = v−k. From (3.14),

u+
j =

⎛⎝ ∑
k:vk=v

ck eik·Rj

⎞⎠ eiωvt (4.9)

is a periodic solution of (3.2) for every v ∈ �(g) and for arbitrary complex values of the
coefficients ck.

Note that the vanishing of all quadratic factors ck′c∗
k is the simplest choice that always

satisfies the constraints (4.7). With this choice, if ck′ is nonzero for a certain value k of k′,
then all other ck′ necessarily vanish except c−k. Hence,

ck′ = cδk′k + dδk′,−k, (4.10)

where c, d are arbitrary complex numbers. Substituting back into (4.6), the latter reduces to

u+
j = (c eik·Rj + d e−ik·Rj ) eiωk t , k � 0. (4.11)

Therefore, the equations of motion for the HM on a lattice are satisfied by any linear
combination of two propagating FR NLSWs of the same frequency, opposite wavevector,
and, in general, different phases. However, (4.11) is simply a special case of (4.9). In general,
there is a additional degeneracy on top of the double (for k �= 0) degeneracy vk = v−k.
Then, (4.9) contains more than one pairs of FR NLSWs of opposite wavevector. For example,
for a D-dimensional hypercubic lattice of L sites per side and with nearest-neighbor exchange
constant −J , the eigenvalues of g are

vk = −2J

D∑
i=1

cos ki, ki ∈
{

2π

L

([
−L

2

]
+ 1

)
, . . . ,

2π

L

[
L

2

]}
. (4.12)

In this case, it is obvious that vk remains invariant under a permutation of the wavevector
components ki , a change of sign of individual components, and there can also be accidental
additional degeneracies.

7
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4.2. A uniqueness theorem

The question arises though, whether (4.7) allows for additional solutions beyond (4.9), that
is, whether there exist more solutions of the equations of motion with constant and equal
z-components of the individual spins. In that respect, note that if r �= 0, the left-hand side
of (4.7) can be written as a linear combination of the linearly independent functions eiωk′k t for
the various distinct values of the frequency difference ωk′k. The vanishing of the coefficients of
these functions yields a homogeneous linear system for the quadratic terms ck′c∗

k. The different
quadratic terms are clearly not independent, and this system may be restrictive enough to rule
out all but the solutions (4.9).

We will show that explicitly, in the simple case of a Heisenberg ring with nearest-neighbor
only interactions: gj,j+1 = −J �= 0. Setting N ≡ �/2, we have⎧⎪⎨⎪⎩

k ·Rj = παj

N

ωk = ωα ≡ −2J r
[
cos
(πα

N

)
− �

]
− b(r)

⎫⎪⎬⎪⎭ α ∈ {[−N ] + 1, . . . , [N ]}
j ∈ {1, . . . , 2N}. (4.13)

Hence

ωk′k = ωα′α ≡ −2J r

[
cos

(
πα′

N

)
− cos

(πα

N

)]
, (4.14)

and for r �= 0 (4.7) is written as
[N]∑

α=[−N]+1

[N]∑
α′=α+1
α′ �=−α

Im
{
ωα′αcα′c∗

α ei π(α′−α)j

N eiωα′αt
} = 0. (4.15)

We first assume that N is an integer, i.e., � is even. The key step in our proof is the
following rather formidable resummation of (4.15):
N−1∑
α=1

Im
{[

(cαc∗
0 + cNc∗

N−α) ei παj

N +
(
c∗

0c−α + cNc∗
α−N

)
e−i παj

N

]
ωα0 eiωα0t

}
+ Im

{[
(−1)j (cNc∗

0)
]
ωN0 eiωN0t

}
+

[ N−1
2 ]∑

α=1

N−(α+1)∑
α′=α+1

Im
{[(

cα′c∗
α + cN−αc∗

N−α′
)

ei π(α′−α)j

N

+
(
c∗
−αc−α′ + c∗

α′−Ncα−N

)
e−i π(α′−α)j

N +
(
cα′c∗

−α + c∗
N−α′cα−N

)
ei π(α′+α)j

N

+
(
c∗
αc−α′ + cN−αc∗

α′−N

)
e−i π(α′+α)j

N

]
ωα′α eiωα′αt

}
+ (−1)j

[ N−1
2 ]∑

α=1

Im
{[(

cN−αc∗
α

)
e−i 2παj

N

+
(
c∗
−αcα−N

)
ei 2παj

N +
(
cN−αc∗

−α + c∗
αcα−N

)]
ωN−α,α eiωN−α,α t

} = 0. (4.16)

Terms have been grouped together so that all frequency differences of type (4.14), appearing
in (4.16), are distinct and have the same sign, namely that of the quantity J r . Consequently, all
time-dependent exponentials in (4.16) are linearly independent functions, thus the quantities
within square brackets must vanish. This, in turn, implies that each and every one of the
parentheses is also zero. Indeed, setting the first square bracket equal to zero for j = 2N, 1
gives a 2 × 2 homogeneous linear system with the determinant∣∣∣∣ 1 1

ei πα
N e−i πα

N

∣∣∣∣ = −2i sin
(πα

N

)
. (4.17)

8
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Similarly, the third square bracket gives for j = 2N, 1, 2, 3 a 4×4 homogeneous system with
the determinant∣∣∣∣∣∣∣∣∣∣

1 1 1 1

ei π(α′−α)

N e−i π(α′−α)

N ei π(α′+α)

N e−i π(α′+α)

N

ei 2π(α′−α)

N e−i 2π(α′−α)

N ei 2π(α′+α)

N e−i 2π(α′+α)

N

ei 3π(α′−α)

N e−i 3π(α′−α)

N ei 3π(α′+α)

N e−i 3π(α′+α)

N

∣∣∣∣∣∣∣∣∣∣
= −64 sin

[
π(α′ − α)

N

]
sin

[
π(α′ + α)

N

]
sin2

(
πα′

N

)
sin2

(πα

N

)
. (4.18)

Finally, for the fourth bracket and j = 2N, 1, 2,∣∣∣∣∣∣∣
1 1 1

e−i 2πα
N ei 2πα

N 1

e−i 4πα
N ei 4πα

N 1

∣∣∣∣∣∣∣ = 16i sin3
(πα

N

)
cos
(πα

N

)
. (4.19)

But each of these determinants is different from zero, since in (4.16), α, α′ and α ± α′ all lie
within {1, . . . , N − 1}. We conclude that

cαc∗
0 + cNc∗

N−α = 0 (4.20a)

c∗
0c−α + cNc∗

α−N = 0 (4.20b)

cNc∗
0 = 0 (4.20c)

cα′c∗
α + cN−αc∗

N−α′ = 0 (4.20d)

c∗
−αc−α′ + c∗

α′−Ncα−N = 0 (4.20e)

cα′c∗
−α + c∗

N−α′cα−N = 0 (4.20f )

c∗
αc−α′ + cN−αc∗

α′−N = 0 (4.20g)

cN−αc∗
α = 0 (4.20h)

c∗
−αcα−N = 0 (4.20i)

cN−αc∗
−α + c∗

αcα−N = 0. (4.20j )

From (4.20c) we see that at least one of c0, cN is zero. As a result, all four quadratic terms
in (4.20a) and (4.20b) vanish. Equation (4.20h) tells us that at least one of cN−α, cα is zero,
hence all six quadratic terms in (4.20d), (4.20g) and (4.20j ) are equal to zero. Finally,
from (4.20i), at least one of c−α, cα−N is zero, so the quadratic terms in (4.20e) and (4.20f )
are also zero. The vanishing of quadratic terms in (4.20) implies that all the factors ck′c∗

k

appearing in (4.7) are equal to zero.
The same can be shown in the case of half-integer N, i.e., � odd, where the resummation

of (4.15) analogous to (4.16) is simply

[N]∑
α=1

Im
{[

cαc∗
0 ei παj

N + c∗
0c−α e−i παj

N

]
ωα0 eiωα0t

}
+

[N]−1∑
α=1

[N]∑
α′=α+1

Im
{[

cα′c∗
α ei π(α′−α)j

N + c∗
−αc−α′ e−i π(α′−α)j

N

+ cα′c∗
−α ei π(α′+α)j

N + c∗
αc−α′ e−i π(α′+α)j

N

]
ωα′α eiωα′αt

} = 0. (4.21)
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Then again, for the range of values of α and α′, we can easily see that the determinants (4.17)
and (4.18) are different from zero, therefore all quadratic factors are zero. Now, since all
factors ck′c∗

k in (4.7) are zero, (4.11) are the most general solutions. But these coincide with
the solutions that (4.9) gives for the Heisenberg ring, and this observation completes our proof.

4.3. The planar case

The case r = 0, where all spins move on the horizontal plane, is special. The frequency
difference ωk′k vanishes for all pairs (k′,k), so the argument showing the uniqueness (for the
Heisenberg ring) of the solution (4.9) breaks down. In this case, (4.7) is also satisfied if

ck = c∗
k′ e−2iφ, where k′

j =
{−kj , if kj ∈ (−π, π)

+kj , if kj = π

}
(4.22)

and φ is an arbitrary real phase. (Note that if the number of sites in each direction is odd, then
in (4.22) we simply have k′ = −k). From (4.6), we see that condition (4.22) corresponds to
a standing (site-independent-phase) spin wave

u+
j (t) = sj e−i[b(0)t+φ] (4.23)

on every general hypersurface (2.4). At any given instant, the spins (in the physical space) are
all aligned. This is a well-known solution. It is more easily derived directly from (3.2), by
noticing that for r = 0, the equations in (3.2a) are decoupled and thus have a simple general
solution:

u+
j (t) = sj e−i[b(0)t+φj ]; sj ∈ [0,∞), φj ∈ [0, 2π). (4.24)

Then, for (4.24) the constraints (3.2b) are written as
�∑

l=1

gjlsj sl sin(φl − φj ) = 0, (4.25)

and are always satisfied by the choice φj = φ corresponding to (4.23). (Of course, (4.24)
and (4.25) are also satisfied by (4.9).) Note that at b = 0 the periodic trajectories (4.23)
become trivial (FR stationary points).

4.4. The shells

Looking closer at (4.9), we see that, for each eigenvalue v ∈ �(g) with multiplicity Nv , it
describes a 2Nv-parameter family of periodic orbits with parameters {|ck|,k : vk = v}, {δk ≡
arg ck − arg ck0 ,k : vk = v,k �= k0,k0 ≡ arbitrary fixed value of k}, and r . The phase
arg ck0 merely represents a time translation. This type of periodic motion takes place on the
hypersurface (2.4) with

s2
j = r2 +

∑
k:vk=v

|ck|2 +
∑
k′>k

2|ck′ ||ck| cos[(k′ − k) · Rj + (δk′ − δk)], (4.26)

and its energy (2.1) is given by

E = −�f

2
r2 − h(r) − v

2

�∑
j=1

(
s2
j − r2

)
. (4.27)

From (4.5) and (4.27), it is clear that, for a particular set of values for the parameters |ck| and
δk, the E − ω plot is quadratic, as long as f �= 0 and h(r) is at most quadratic (as in the
presence of external magnetic field and/or single-ion anisotropy).

10
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The surface (4.26) is an equal-spins shell if and only if all the coefficients ck but one are
equal to zero. Therefore, on an equal-spins shell, the propagating FR NLSWs are the only
solutions of the equations of motion, at least for the Heisenberg ring, with nonzero constant
and equal z-components of the spins. For each value of the wavevector, these constitute a
two-parameter (|c|, r) family of cycles (periodic orbits). As it is known (e.g., see [32]), this
family is more naturally parametrized in terms of the spin length s ≡

√
|c|2 + r2 and the

polar angle θ ≡ arccos(r/s). Now, to exactly two nonzero coefficients ck ≡ c and ck′ ≡ c′

correspond a four-parameter family of cycles of type (4.9) which lie on the three-parameter
family of shells

s2
j (q, p, δ) = 2q2 + 2p2 cos[(k′ − k) · Rj + δ], q, p > 0, (4.28)

where

q2 = r2 + |c|2 + |c′|2
2

, p2 = |c||c′|, δ = arg c′ − arg c. (4.29)

Each such shell hosts a one-parameter family of these cycles which is easily derived
from (4.29),

u+
j (θ, t) =

(
a(q, p, θ) eik·Rj +

p2 eiδ

a(q, p, θ)
eik′ ·Rj

)
eiωv(t−t0) (4.30a)

uz
j (θ, t) =

√
2q cos θ, (4.30b)

where

a(q, p, θ) ≡
√

q2 sin2 θ ±
√

q4 sin4 θ − p4, π − arcsin

(
p

q

)
� θ � arcsin

(
p

q

)
.

(4.31)

Unlike the cases of one and two nonzero coefficients, we can easily show with a similar
argument, that every shell (4.26) corresponding to three or more nonzero coefficients contains
only two (out of the 2Nv-parameter family (4.9)) periodic orbits with opposite value for r, all
other parameters being the same.

5. ‘Off-shell’ AF NLSWs

Now, consider the general Bravais lattice of section 4.1 with the additional requirement that
the lattice is bipartite. This does not alter the assumption that the interactions of a site are
location independent, in particular, every spin has the same interactions irrespective of the
sublattice to which it belongs. As we mentioned in the introduction, the AF NLSWs have
constant and equal z-components of the individual spins in each sublattice. We will show that
there are more solutions that share this property, however, contrary to the former, they are
‘off-shell’.

5.1. The general solution with constant and equal z-components in each sublattice

We seek solutions with rj = rA and bj (rj ) = bA(rA) ≡ bA for j ∈ A, and rj = rB
and bj (rj ) = bB(rB) ≡ bB for j ∈ B, where rA, rB are real constants. With the ansatz
Pjk = cA(B) eikRj for j ∈ A(B), the eigenvalue problem AP·k = ωkP·k reduces to the
equation

(ωk + bA + f rB)cA − (rAvk)cB = 0 (5.1)

11
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and its A ↔ B interchange, where vk is given by (4.1). These two equations constitute a
homogeneous linear system in cA, cB, and the eigenvalues are just the roots

ω±
k ≡

−f (rA + rB) − (bA + bB) ±
√

[f (rA − rB) − (bA − bB)]2 + 4rArBv2
k

2
(5.2)

of the determinant of this system. According to (3.7), the general solution of (3.2) reads

u+
j =

∑
k

(
c
A(B)

k+ eiω+
k t + c

A(B)

k− eiω−
k t
)

eik·Rj , (5.3)

where cAk±, cBk± are complex numbers whose ratio is a real number given by (5.1) (or
equivalently by its A ↔ B interchange) for ωk = ω±

k . (Note that ω+
k = ω−

k if vk = 0 and
f (rB − rA) = bB − bA, or if vk �= 0, rA = rB = 0, and bA = bB, or if vk �= 0, rA = 0, rB �= 0,
and f rB = bB−bA. In the third case, there is only one eigenvector, namely (0,1), corresponding
to the double eigenvalue ω+

k = ω−
k so the two terms in the parenthesis of (5.3) are linearly

dependent and we can drop one of them.)
The coefficients cAk±, cBk± are also restricted by (3.8) which is written as

Im

⎡⎣∑
k′,k

∑
λ,µ=±

vk′cBk′λc
A∗
kµ ei(k′−k)·Rj eiωλµ

k′k t

⎤⎦ = 0, j ∈ A, (5.4)

where

ω
λµ

k′k ≡ ωλ
k′ − ω

µ

k , (5.5)

and the A ↔ B interchange of (5.4). The wavevector k runs over �/2 pairwise non-dual
values within the primitive cell of the reciprocal lattice [32]. Indeed, if (k, k̃) is a pair of dual
wavevectors, then vk = −vk̃, and eik·Rj = +(−) eĩk·Rj for j ∈ A(B), hence it is clear from
(5.1)–(5.3) that the terms in (5.3) corresponding to k and k̃ are identical. After all, P is a
square matrix and each k corresponds to two eigenvectors, so k could not possibly assume
more than �/2 distinct values.

Interchanging the dummy indices k′ ↔ k and λ ↔ µ in (5.4), and adding the resulting
equation to (5.4) itself, we get an equivalent equation

Im

⎡⎣∑
k′,k

∑
λ,µ=±

(
vk′cBk′λc

A∗
kµ − vkcAk′λc

B∗
kµ

)
ei(k′−k)·Rj eiωλµ

k′k t

⎤⎦ = 0, j ∈ A. (5.6)

Now, for every eigenvalue v of g and arbitrary values of the coefficients cAk , the periodic
trajectories

u+
j =

⎛⎝ ∑
k:vk=v

c
A(B)

k eik·Rj

⎞⎠ eiω±
v t , j ∈ A(B) (5.7)

are of the form (5.3). As we can easily check, they satisfy (5.6) and its A ↔ B interchange,
hence they are solutions of (3.2).

Recall that if rA(B) �= 0, equation (3.2b) is equivalent to (3.4) for all j ∈ A(B). The latter,
using (5.3), is written as

Im

⎡⎣∑
k′,k

∑
λ,µ=±

ω
λµ

k′kc
A(B)

k′λ c
A(B)∗
kµ ei(k′−k)·Rj eiωλµ

k′k t

⎤⎦ = 0, j ∈ A(B), (5.8)
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and can be used instead of (5.6). Suppressing the index A(B) and using ω−−
k′k = ω++

kk′ = −ω++
k′k

and ω−+
k′k = −ω+−

kk′ = −ω+−
k′k, we can write (5.8) as∑

k′>k
k′ �=−k

Im
{
ω++

k′k

[
ck′+c

∗
k+ ei(k′−k)·Rj + c∗

k′−ck− e−i(k′−k)·Rj
]

eiω++
k′k t

+ ω+−
k′k

[
ck′+c

∗
k− ei(k′−k)·Rj + c∗

k′−ck+ e−i(k′−k)·Rj
]

eiω+−
k′k t
}

+
∑

k

Im
{
ω+−

kk

[
ck+c

∗
k− + ck+c

∗
−k,− e2ik·Rj

]
eiω+−

kk t
} = 0, (5.9)

where, by convention, the second term within the last square bracket is taken to be zero if
k = 0, or if −k does not belong to the primitive cell of the reciprocal lattice.

Now, the simplest solution of (5.9) is the vanishing of all quadratic factors ck′c∗
k, i.e.,

ck′+ck+ = 0, ∀ (k′,k) : k′ �= ±k (5.10a)

ck′−ck− = 0, ∀ (k′,k) : k′ �= ±k (5.10b)

ck′+ck− = 0, ∀ (k′,k). (5.10c)

Equations (5.10a) and (5.10b) imply

ck+ = c+δkq + d+δk,−q (5.11)

and

ck− = c−δkp + d−δk,−p, (5.12)

respectively, where c+, d+, c−, d− are arbitrary complex numbers, and q,p are arbitrary but
fixed values of the wavevector k. Substituting (5.11) and (5.12) into (5.10c), we eventually
find

c+c− = d+d− = c+d− = c−d+ = 0

which yield

c+ = d+ = 0 or c− = d− = 0. (5.13)

With these properties of the coefficients, the solutions allowed are periodic of the type

u+
j = (cA(B)

± eik·Rj + d
A(B)
± e−ik·Rj

)
eiω±

k t , k � 0. (5.14)

Indeed, due to (5.11)–(5.13), the general solution (5.3) reduces to (5.14), but for a
wavevector k which, in principle, can depend on the sublattice. However, since rA, rB �= 0,
we see from (5.1) and its A ↔ B interchange that, unless vk = 0, cAk± vanishes if and only if
cBk± vanishes. Consequently, the wavevector k in (5.14) must be the same for both sublattices.

So we see that the equations of motion for the HM on a lattice are satisfied by any linear
combination of two propagating (generalized) AF NLSWs of the same frequency, opposite
direction, and possibly different phase. In general, though there is additional degeneracy on
top of the double degeneracy vk = v−k (see section 4.1) and (5.7) is broader than (5.14).

5.2. A uniqueness theorem

Similarly to the FR case, we can show that (5.7) is the only solution of (3.2) in the case of a
Heisenberg ring and if both rA and rB are different from zero. Since rA(B) �= 0, equation (3.2b)
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is equivalent to (3.4) and thus to (5.9) for all j ∈ A(B). For the Heisenberg ring with
nearest-neighbor interactions gj,j+1 = −J �= 0, setting N ≡ �/4, we can write⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k · Rj = παj

N
, α ∈ {[−N ] + 1, . . . , [N ]}, j ∈ {1, . . . , 2N}

ω±
k = ω±

α

≡ −f (rA + rB) − (bA + bB) ±
√

[f (rA − rB) − (bA − bB)]2 + 16rArBJ 2 cos2(πα/2N)

2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

(5.15)

hence

ω+±
k′k = ω+±

α′α ≡ 1
2

√
[f (rA − rB) − (bA − bB)]2 + 8rArBJ 2[1 + cos(πα′/N)]

∓ 1
2

√
[f (rA − rB) − (bA − bB)]2 + 8rArBJ 2[1 + cos(πα/N)], (5.16)

and (5.9) reads

[N]∑
α=[−N]+1

[N]∑
α′=α+1
α′ �=−α

Im
{
ω++

α′α
[
cα′+c

∗
α+ ei π(α′−α)j

N + c∗
α′−cα− e−i π(α′−α)j

N

]
eiω++

α′αt

+ ω+−
α′α
[
cα′+c

∗
α− ei π(α′−α)j

N + c∗
α′−cα+ e−i π(α′−α)j

N

]
eiω+−

α′αt
}

+
[N]∑

α=[−N]+1

Im
{
ω+−

αα

[
cα+c

∗
α− + cα+c

∗
−α,− ei 2παj

N

]
eiω+−

αα t
} = 0. (5.17)

In a manner analogous with the FR case, for N integer (�/2 even) we will combine the
terms of (5.17) as follows:

N−1∑
α=1

Im
{[(

cα+c
∗
0+ + c0−c∗

−α,−
)

ei παj

N +
(
c∗

0+c−α,+ + c∗
α−c0−

)
e−i παj

N

]
ω++

α0 eiω++
α0 t
}

+
N−1∑
α=1

Im
{[(

cN+c
∗
N−α,+ + c∗

N−cα−N,−
)

ei παj

N +
(
cN+c

∗
α−N,+ + c∗

N−cN−α,−
)

e−i παj

N

]
ω++

N,N−α eiω++
N,N−αt

}
+ Im

{[
(−1)j

(
cN+c

∗
0+ + c∗

N−c0−
)]

ω++
N0 eiω++

N0t
}

+

[ N−1
2 ]∑

α=1

N−α∑
α′=α+1

Im
{[(

cα′+c
∗
α+ + c−α,−c∗

−α′,−
)

ei π(α′−α)j

N

+
(
c∗
−α,+c−α′,+ + c∗

α′−cα−
)

e−i π(α′−α)j

N +
(
cα′+c

∗
−α,+ + cα−c∗

−α′,−
)

ei π(α′+α)j

N

+
(
c∗
α+c−α′,+ + c∗

α′−c−α,−
)

e−i π(α′+α)j

N

]
ω++

α′α eiω++
α′αt
}

+

[ N−1
2 ]∑

α=1

N−α−1∑
α′=α+1

Im
{[(

cN−α,+c
∗
N−α′,+ + cα′−N,−c∗

α−N,−
)

ei π(α′−α)j

N

+
(
c∗
α′−N,+cα−N,+ + c∗

N−α,−cN−α′,−
)

e−i π(α′−α)j

N

14
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+
(
c∗
N−α′,+cα−N,+ + c∗

N−α,−cα′−N,−
)

ei π(α′+α)j

N

+
(
cN−α,+c

∗
α′−N,+ + cN−α′,−c∗

α−N,−
)

e−i π(α′+α)j

N

]
ω++

N−α,N−α′ eiω++
N−α,N−α′ t

}
+

N−1∑
α=1

Im
{[(

cα+c
∗
0− + c0+c

∗
−α,−

)
ei παj

N +
(
c∗
α−c0+ + c∗

0−c−α,+
)

e−i παj

N

]
ω+−

α0 eiω+−
α0 t
}

+
N−1∑
α=1

Im
{[(

cN+c
∗
N−α,− + c∗

N−cα−N,+
)

ei παj

N +
(
cN+c

∗
α−N,− + c∗

N−cN−α,+
)

e−i παj

N

]
×ω+−

N,N−α eiω+−
N,N−αt

}
+ Im

{[
(−1)j

(
cN+c

∗
0− + c∗

N−c0+
)]

ω+−
N0 eiω+−

N0 t
}

+

[ N−1
2 ]∑

α=1

N−α∑
α′=α+1

Im
{[(

cα′+c
∗
α− + c−α,+c

∗
−α′,−

)
ei π(α′−α)j

N

+
(
c∗
α′−cα+ + c∗

−α,−c−α′,+
)

e−i π(α′−α)j

N +
(
cα′+c

∗
−α,− + cα+c

∗
−α′,−

)
ei π(α′+α)j

N

+
(
c∗
α′−c−α,+ + c∗

α−c−α′,+
)

e−i π(α′+α)j

N

]
ω+−

α′α eiω+−
α′αt
}

+

[ N−1
2 ]∑

α=1

N−α−1∑
α′=α+1

Im
{[(

cN−α,+c
∗
N−α′,− + cα′−N,+c

∗
α−N,−

)
ei π(α′−α)j

N

+
(
c∗
N−α,−cN−α′,+ + c∗

α′−N,−cα−N,+
)

e−i π(α′−α)j

N

+
(
c∗
N−α′,−cα−N,+ + c∗

N−α,−cα′−N,+
)

ei π(α′+α)j

N

+
(
cN−α,+c

∗
α′−N,− + cN−α′,+c

∗
α−N,−

)
e−i π(α′+α)j

N

]
ω+−

N−α,N−α′ eiω+−
N−α,N−α′ t

}
+

N−1∑
α=1

Im
{[(

cα+c
∗
α− + c−α,+c

∗
−α,−

)
+
(
cα+c

∗
−α,−

)
ei 2παj

N +
(
c−α+c

∗
α,−
)

e−i 2παj

N

]
ω+−

αα eiω+−
αα t
}

+ Im
{[

c0+c
∗
0−
]
ω+−

00 eiω+−
00 t
}

+ Im
{[

cN+c
∗
N−
]
ω+−

NN eiω+−
NN t
} = 0. (5.18)

Since by assumption rArB �= 0, the time-dependent exponentials in (5.18) are linearly
independent functions (apart from accidental degeneracies). As a result, the quantities in
square brackets must vanish. From this, and the fact that the determinants (4.17)–(4.19) are
different from zero (since in (5.18), α, α′ and α ±α′ all lie within {1, . . . , N − 1}), we see that
every parenthesis appearing in (5.18) must be equal to zero. Therefore,

cα+c
∗
0+ + c0−c∗

−α,− = 0 (5.19a)

c∗
0+c−α,+ + c∗

α−c0− = 0 (5.19b)

cN+c
∗
N−α,+ + c∗

N−cα−N,− = 0 (5.19c)

cN+c
∗
α−N,+ + c∗

N−cN−α,− = 0 (5.19d)
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cN+c
∗
0+ + c∗

N−c0− = 0 (5.19e)

cα′+c
∗
α+ + c−α,−c∗

−α′,− = 0 (5.19f )

c∗
−α,+c−α′,+ + c∗

α′−cα− = 0 (5.19g)

cα′+c
∗
−α,+ + cα−c∗

−α′,− = 0 (5.19h)

c∗
α+c−α′,+ + c∗

α′−c−α,− = 0 (5.19i)

cN−α,+c
∗
N−α′,+ + cα′−N,−c∗

α−N,− = 0 (5.19j )

c∗
α′−N,+cα−N,+ + c∗

N−α,−cN−α′,− = 0 (5.19k)

c∗
N−α′,+cα−N,+ + c∗

N−α,−cα′−N,− = 0 (5.19l)

cN−α,+c
∗
α′−N,+ + cN−α′,−c∗

α−N,− = 0 (5.19m)

and

cα+c
∗
0− + c0+c

∗
−α,− = 0 (5.20a)

c∗
α−c0+ + c∗

0−c−α,+ = 0 (5.20b)

cN+c
∗
N−α,− + c∗

N−cα−N,+ = 0 (5.20c)

cN+c
∗
α−N,− + c∗

N−cN−α,+ = 0 (5.20d)

cN+c
∗
0− + c∗

N−c0+ = 0 (5.20e)

cα′+c
∗
α− + c−α,+c

∗
−α′,− = 0 (5.20f )

c∗
α′−cα+ + c∗

−α,−c−α′,+ = 0 (5.20g)

cα′+c
∗
−α,− + cα+c

∗
−α′,− = 0 (5.20h)

c∗
α′−c−α,+ + c∗

α−c−α′,+ = 0 (5.20i)

cN−α,+c
∗
N−α′,− + cα′−N,+c

∗
α−N,− = 0 (5.20j )

c∗
N−α,−cN−α′,+ + c∗

α′−N,−cα−N,+ = 0 (5.20k)

c∗
N−α′,−cα−N,+ + c∗

N−α,−cα′−N,+ = 0 (5.20l)

cN−α,+c
∗
α′−N,− + cN−α′,+c

∗
α−N,− = 0 (5.20m)

cα+c
∗
α− + c−α,+c

∗
−α,− = 0 (5.20n)

cα+c
∗
−α,− = 0 (5.20o)

c−α+c
∗
α,− = 0 (5.20p)

c0+c
∗
0− = 0 (5.20q)

cN+c
∗
N− = 0 . (5.20r)

Now, we can immediately recognize that in all equations in (5.19), as well as in
(5.20a)–(5.20n), at least one of the c-coefficients is necessarily equal to zero due to equations
(5.20o)–(5.20r). Therefore, all quadratic terms in (5.19) and (5.20), hence in (5.9) too, must
vanish.
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We can also show this in the case of half-integer N (�/2 odd). Then, instead of (5.18) we
have the following grouping of terms for (5.17):
[N]∑
α=1

Im
{[(

cα+c
∗
0+ + c0−c∗

−α,−
)

ei παj

N +
(
c∗

0+c−α,+ + c∗
α−c0−

)
e−i παj

N

]
ω++

α0 eiω++
α0 t
}

+
[N]−1∑
α=1

[N]∑
α′=α+1

Im
{[(

cα′+c
∗
α+ + c−α,−c∗

−α′,−
)

ei π(α′−α)j

N

+
(
c∗
−α,+c−α′,+ + c∗

α′−cα−
)

e−i π(α′−α)j

N +
(
cα′+c

∗
−α,+ + cα−c∗

−α′,−
)

ei π(α′+α)j

N

+
(
c∗
α+c−α′,+ + c∗

α′−c−α,−
)

e−i π(α′+α)j

N

]
ω++

α′α eiω++
α′αt
}

+
N−1∑
α=1

Im
{[(

cα+c
∗
0− + c0+c

∗
−α,−

)
ei παj

N +
(
c∗
α−c0+ + c∗

0−c−α,+
)

e−i παj

N

]
ω+−

α0 eiω+−
α0 t
}

+
[N]−1∑
α=1

[N]∑
α′=α+1

Im
{[(

cα′+c
∗
α− + c−α,+c

∗
−α′,−

)
ei π(α′−α)j

N

+
(
c∗
α′−cα+ + c∗

−α,−c−α′,+
)

e−i π(α′−α)j

N +
(
cα′+c

∗
−α,− + cα+c

∗
−α′,−

)
ei π(α′+α)j

N

+
(
c∗
α′−c−α,+ + c∗

α−c−α′,+
)

e−i π(α′+α)j

N

]
ω+−

α′α eiω+−
α′αt
}

+
[N]∑
α=1

Im
{[(

cα+c
∗
α− + c−α,+c

∗
−α,−

)
+
(
cα+c

∗
−α,−

)
ei 2παj

N

+
(
c−α+c

∗
α,−
)

e−i 2παj

N

]
ω+−

αα eiω+−
αα t
}

+ Im
{[

c0+c
∗
0−
]
ω+−

00 eiω+−
00 t
} = 0. (5.21)

The different brackets in (5.21) multiply linearly independent functions, so they must all be
equal to zero. Moreover, for the range of values of α and α′ in (5.21), the determinants
(4.17)–(4.19) are nonzero, hence every parenthesis appearing in (5.21) vanishes. The rest of
the argument proceeds in a completely analogous manner as in the case of integer N. Since,
in every case the cc factors in (5.9) are zero, (5.14) is the only solution. But for the spin ring,
this coincides with (5.7). And the uniqueness of the latter is what we had set out to prove.

5.3. The planar case

The case rArB = 0, where the spins of at least one of the two sublattices move on the horizontal
plane, is special. The frequency difference ωk′k vanishes for all pairs (k′,k), hence the
argument proving the uniqueness (in the case of the Heisenberg ring) of the solution (5.7) breaks
down. And indeed, there are additional solutions. Starting with (3.2), we can analytically
calculate (or at least formulate) all the solutions. Assuming rA = 0, equations (3.2a)
become

du+
j

dt
= −i(f rB + bA)u+

j ; j ∈ A (5.22a)

du+
j

dt
= −ibBu+

j + irB

�∑
l=1

gjlu
+
l ; j ∈ B. (5.22b)

The homogeneous equations (5.22a) are decoupled and they are readily solved as

u+
j (t) = sj e−i[(f rB+bA)t+φj ]; j ∈ A, (5.23)
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where φj are arbitrary real phases. Substituting (5.23) into (5.22b) yields a set of decoupled
non-homogeneous equations

du+
j

dt
= −ibBu+

j + irB

( �∑
l=1

gjlsl e−iφl

)
e−i(f rB+bA)t ; j ∈ B (5.24)

with the general solution

u+
j (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
cj e−ibB t − rB

∑�
l=1 gjlsl e−iφl

f rB + bA − bB
e−i(f rB+bA)t , if f rB + bA �= bB

cj e−ibB t + irB

(
�∑

l=1

gjlsl e−iφl

)
t e−ibB t , if f rB + bA = bB

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ; j ∈ B,

(5.25)

where cj are arbitrary complex constants.
First, we consider the sub-case rB = 0. Then, from (5.23) and (5.25) we see that the

general solution of (3.2a) is

u+
j (t) = sj e−i[bA(B)(0)t+φj ]; j ∈ A(B). (5.26)

In addition, (3.2b) gives
�∑

l=1

gjlsj sl sin{[bB(A)(0) − bA(B)(0)]t + [φl − φj ]} = 0; j ∈ A(B). (5.27)

Equations (5.26) and (5.27) are certainly satisfied by (5.7), however, they may also allow for
new standing-wave (for each sublattice) solutions. For bA(0) = bB(0) they reduce to (4.24)
and (4.25), so we will assume that bA(0) �= bB(0). Then, (5.27) is equivalent to the system

�∑
l=1

gjlsj sl sin(φl − φj ) = 0; j = 1, . . . , � (5.28a)

�∑
l=1

gjlsj sl cos(φl − φj ) = 0; j = 1, . . . , �. (5.28b)

A case in which both (5.28a) and (5.28b) hold, is when φj = φ and sj

∑�
l=1 gjlsl = 0. (The

latter condition is satisfied, for instance, if the vector (s1, . . . , s�) is an eigenvector of zero
eigenvalue for the interaction matrix g.) The corresponding solution

u+
j (t) = sj e−i[bA(B)(0)t+φ]; j ∈ A(B) (5.29)

is a planar standing spin wave for each sublattice. However, unless the ratio bA(0) and bB(0)

is rational, (5.29) describes a non-periodic motion, the first instance of non-periodic motion
with constant z-components of the spins that we have encountered so far.

Now, assume that rB �= 0. Then, in view of (3.5), which for j ∈ B is equivalent to (3.2b),
(5.25) eventually yields

u+
j (t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
s2
j − r2

B e−i(bB t+φj ), if
�∑

l=1

gjlsl e−iφl = 0

rB
∑�

l=1 gjlsl e−iφl

−f rB − bA + bB
e−i(f rB+bA)t , if

�∑
l=1

gjlsl e−iφl �= 0, f rB + bA �= bB

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
; j ∈ B.

(5.30)
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We still need to take into account (3.2b) for j ∈ A. Note that rB can be such that f rB + bA =
bB, only if

∑�
l=1 gjlsl e−iφl = 0 for all j ∈ B. For simplicity, let us only examine the cases

where the latter condition either holds for all j ∈ B or for none. In the first case, (3.2b) for
j ∈ A reads
�∑

l=1

gjlsj

√
s2
l − r2

B sin[(f rB + bA − bB)t + (φj − φl)] = 0; j ∈ A. (5.31)

If f rB + bA = bB, (5.31) is clearly satisfied by φj = φ, hence one possible solution is the
standing NLSW,

u+
j (t) =

{
sj e−i(bB t+φ); j ∈ A√

s2
j − r2

B e−i(bB t+φ); j ∈ B

}
, (5.32)

provided that {sl : l ∈ A} is a zero eigenvector of the matrix gj∈B,l∈A. If f rB + bA �= bB,
(5.31) is equivalent to the system

�∑
l=1

gjlsj

√
s2
l − r2

B sin(φl − φj ) = 0; j ∈ A (5.33a)

�∑
l=1

gjlsj

√
s2
l − r2

B cos(φl − φj ) = 0; j ∈ A. (5.33b)

Hence, we see that

u+
j (t) =

{
sj e−i[(f rB+bA)t+φ]; j ∈ A√

s2
j − r2

B e−i(bB t+φ); j ∈ B

}
(5.34)

is a solution, if additionally
∑�

l=1 gjlsj

√
s2
l − r2

B = 0,∀ j ∈ A, and {sl : l ∈ A} is a zero
eigenvector of the matrix gj∈B,l∈A. Now, let us turn to the second case in (5.30), for which
(3.2b) for j ∈ A is written as

�∑
l=1

g2
j lsj sl sin(φj − φl) = 0; j ∈ A. (5.35)

The choice φj = φ for all j is compatible with (5.35) and corresponds to the standing NLSWs

u+
j (t) =

⎧⎪⎨⎪⎩
sj e−i[(f rB+bA)t+φ]; j ∈ A
rB
∑�

l=1 gjlsl

bB − f rB − bA
e−i[(f rB+bA)t+φ]; j ∈ B

⎫⎪⎬⎪⎭ . (5.36)

5.4. The shells

Considering (5.7), we see that, for each eigenvalue v of g with multiplicity Nv , it describes two
(one for each root ω±

v ) (2Nv+1)-parameter families of periodic orbits with parameters {|cAk |,k :
vk = v}, {δk ≡ arg cAk − arg cAk0

,k : vk = v,k �= k0,k0 ≡ arbitrary fixed value of k}, rA
and rB. The phase arg cAk0

represents just a time translation. These periodic orbits lie on the
hypersurface (2.4) with

s2
j = r2

A + Qj ; j ∈ A (5.37a)
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s2
j = r2

B +

(
ωv + bA + f rB

rAv

)2

Qj ; j ∈ B, (5.37b)

where

Qj ≡
∑

k:vk=v

∣∣cAk ∣∣2 +
∑
k′>k

2
∣∣cAk′
∣∣∣∣cAk ∣∣ cos[(k′ − k) · Rj + (δk′ − δk)]. (5.38)

Their energy (2.1) is

E = −�f

2
rArB − h(rA, rB) − v

2

(
ωv + bA + f rB

rAv

) �∑
j=1

Qj. (5.39)

Note that for rA = rB, the two (2Nv + 1)-parameter families of ‘off-shell’ AF NLSWs are
reduced to the (2Nv)-parameter family of ‘off-shell’ FR NLSWs.

On the surface defined by (5.37), all the spins of the A sublattice are equal (sj = sA)

if and only if all the coefficients cAk but one are equal to zero. The corresponding three
parameter (|cA|, rA, rB) sub-family can also be parametrized by (sA, rA, rB), and the spins of
the sublattice B are also equal and given by

s2
B = r2

B +

(
ωv(rA, rB) + bA + f rB

rAv

)2 (
s2
A − r2

A
)
. (5.40)

If sA = sB = s, (5.40) defines a curve on the (rA, rB) plane, and the two-parameter (s, rA)

family is the family of the AF NLSWs. Therefore, on an equal-spins shell, the AF NLSWs are
the only solutions of the equations of motion (at least for the Heisenberg ring), with nonzero
constant and equal z-components of the spins in each sublattice. The FR–AF bifurcations
on an equal-spins shell are thoroughly understood [32]. It is interesting that, although the
generalized AF family has one parameter more than the generalized FR family (and in fact,
the former contains the latter), on an equal-spins shell both reduce to one-parameter families
that bifurcate from each other for the corresponding values of the wavevector. Clearly, the
transition between FR and AF NLSWs can happen at any common energy value via a path in
the set of generalized AF spin waves that crosses different shells of unequal spins. For two or
more nonzero c-coefficients, we can easily show that the shells (5.37) contain only four (out
of the (2Nv + 1)-parameter family (5.7)) periodic orbits that differ in the signs of rA and rB,
all other parameters being the same.

6. Conclusion

We studied ‘off-shell’ analytical solutions of the classical HM, which like the well-known
‘on-shell’ NLSWs, have constant and equal z-components of the spins. In particular, we
showed the uniqueness of the derived solution of this type in the case of the Heisenberg ring.
It is also interesting to explore further analytical solutions for small Heisenberg chains as well
as special standing-wave-type solutions. This work is part of an investigation of the dynamics
and phase-space structure of the classical HM.
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